9528 measured reflections

 $R_{\rm int} = 0.104$

2592 independent reflections

1421 reflections with $I > 2\sigma(I)$

mm

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Benzyl-6-methyl-2-sulfanylidene-2,3dihydroquinazolin-4(1H)-one

Rashad Al-Salahi,^a Mohamed Al-Omar,^b Hussein El-Subbagh,^c Madhukar Hemamalini^d and Hoong-Kun Fun^d*‡

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^bDrug Exploration and Development Chair, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^cCollege of Pharmaceutical Sciences, Future University, Cairo 12311, Egypt, and ^dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Received 6 February 2012; accepted 10 February 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.055; wR factor = 0.166; data-to-parameter ratio = 14.2.

In the title compound, $C_{16}H_{14}N_2OS$, the quinazoline ring system is essentially planar, with a maximum deviation of 0.029 (3) Å. The dihedral angle between the quinazoline and benzene rings is $88.4 (2)^{\circ}$. In the crystal, adjacent molecules are connected *via* pairs of $N-H \cdots S$ and $C-H \cdots O$ hydrogen bonds, which generate $R_2^2(8)$ and $R_2^2(10)$ graph-set motifs, respectively, resulting in a supramolecular chain along the a axis.

Related literature

For details and applications of guinazoline compounds, see: Roth & Fenner (2000); Jantova et al. (2004); Harris & Thorarensen (2004); Andries et al. (2005); Al-Rashood et al. (2006); Ghorab et al. (2007); Rádl et al. (2000); Klepser & Klepser (1997); Al-Omar et al. (2004); Al-Omary et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bondlength data, see: Allen et al. (1987).

Experimental

Crystal data

C ₁₆ H ₁₄ N ₂ OS	V = 2843.4 (4) Å ³
$M_r = 282.35$	Z = 8
Monoclinic, $C2/c$	Cu Ka radiation
a = 24.2438 (18) Å	$\mu = 1.99 \text{ mm}^{-1}$
b = 5.1618 (5) Å	$T = 296 { m K}$
c = 24.4265 (17) Å	$0.83 \times 0.12 \times 0.06$
$\beta = 111.532 \ (6)^{\circ}$	

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.289, \ T_{\max} = 0.890$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	182 parameters
$wR(F^2) = 0.166$	H-atom parameters constrained
S = 0.93	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
2592 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1A\cdots S1^i$	0.86	2.50	3.335 (3)	165
$C4-H4A\cdots O1^{ii}$	0.93	2.41	3.295 (4)	159

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (ii) -x, -y + 2, -z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

RAS, MAO and HES express their gratitude to Mr Hazem Ghabbour, X-ray Division of the Pharmaceutical Chemistry Department, King Saud University, for valuable help in the determination of the X-ray crystal structure. MH and HFK thank the Malaysian Government and Universiti Sains Malaysia for Research University Grant No. 1001/PFIZIK/ 811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5070).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

- Al-Omar, M. A., Abdel Hamide, S. G., Al-Khamees, H. A. & El-Subbagh, H. I. (2004). Saudi Pharm. J. 12, 63-71.
- Al-Omary, M. F., Abou-zeid, L. A., Nagi, M. N., Habib, E. E., Abdel-Aziz, A., El-Azab, A. S., Abdel-Hamide, S. G., Al-Omar, M. A., Al-Obaid, A. M. & El-Subbagh, H. I. (2010). Bioorg. Med. Chem. 18, 2849-2863.
- Al-Rashood, S. T., Aboldahab, I. A., Nagi, M. N., Abouzeid, L. A., Abdel-Aziz, A. A. M., Abdel-hamide, S. G., Youssef, K. M., Al-Obaid, A. M. & El-Subbagh, H. I. (2006). Bioorg. Med. Chem. 14, 8608-8621.

[‡] Alternative address: College of Pharmacy (Visiting Professor), King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

- Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. A. (2005). Science, **307**, 223–227.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ghorab, M. M., Ragab, F. A., Noaman, E., Heiba, H. I. & El-Hossary, E. M. (2007). Arzneim. Forsch. Drug Res. 58, 35–41.
- Harris, C. R. & Thorarensen, A. (2004). Curr. Med. Chem. 11, 2213-2243.
- Jantova, S., Stankovsky, S. & Spirkova, K. (2004). *Biologia (Bratisl.)*, **59**, 741–752.
- Klepser, M. E. & Klepser, T. B. (1997). Drugs, 53, 40-73.
- Rádl, S., Hezky, P., Proška, J. & Krejci, I. (2000). Arch. Pharm. (Weinheim Ger.), 333, 381-386.
- Roth, H. J. & Fenner, H. (2000). Arzneistoffe, 3rd ed., pp. 51–114. Stuttgart: Deutscher Apotheker Verlag.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o717-o718 [doi:10.1107/S1600536812006009]

3-Benzyl-6-methyl-2-sulfanylidene-2,3-dihydroquinazolin-4(1H)-one

Rashad Al-Salahi, Mohamed Al-Omar, Hussein El-Subbagh, Madhukar Hemamalini and Hoong-Kun Fun

Comment

Quinazoline moiety is present in many classes of biologically-active compounds. A number of them have been clinically used as antifungal, antibacterial and antiprotozoic drugs (Roth & Fenner, 2000; Jantova *et al.*, 2004; Harris & Thorarensen, 2004), as well as antituberculotic agents (Andries *et al.*, 2005). Furthermore, they have drawn much attention due to their broad range of pharmacological properties which include antitumor (Al-Rashood *et al.*, 2006), anticancer (Ghorab *et al.*, 2007) and analgesic (Rádl *et al.*, 2000) properties. Certain quinazoline analogs also showed remarkable activity against the opportunistic infections of Pneumocystis carinii and Toxoplasma gondii. Those microorganisms proved to be the priniciple cause of death in patients with immunocompromised diseases such as acquired immune deficiency syndrome (Klepser & Klepser, 1997). This work is a continuation of this program with the aim of obtaining an interesting series of quinazolines that contain the thioxo functional group which was identified as a possible pharmacophore of the antimicrobial activity (Al-Omar *et al.*, 2004; Al-Omary *et al.*, 2010).

The molecular structure of the title compound is shown in Fig. 1. The quinazoline (N1,N2/C1–C8) ring is essentially planar, with a maximum deviation of 0.029 (3) Å for atom C2. The dihedral angle between the quinazoline (N1,N2/C1–C8) and the benzene (C10–C15) rings is 88.4 (2)°. The bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. In the crystal, (Fig. 2), the adjacent molecules are connected *via* a pair of N—H…S and C—H…O (Table 1) hydrogen bonds, generating $R^2_2(8)$ and $R^2_2(10)$ graph-set motifs (Bernstein *et al.*, 1995), respectively, resulting in a supramolecular [100] chain.

Experimental

A mixture of benzyl isothiocyanate (10 mmol) and 2-amino-5-methyl benzoic acid (10 mmol) in ethanol (30 ml) was heated under reflux in the presence of triethylamine (5 mmol) for 2 h. After cooling, the mixture was poured into ice/water. The resulting solid was filtered, washed with water and dried. Recrystallization from ethanol gave 3-benzyl-2,3-dihydro-6-methyl-2-thioxo-quinazoline-4(1*H*)-one as colorless crystals.

Refinement

All H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93–0.97 Å) and were refined using a riding model, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. A rotating group model was applied to the methyl groups.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Figure 2

The crystal packing view of the title compound along the *b* axis.

3-Benzyl-6-methyl-2-sulfanylidene-2,3-dihydroquinazolin-4(1*H*)-one

Crystal data C₁₆H₁₄N₂OS $M_r = 282.35$ Monoclinic, C2/c Hall symbol: -C 2yc a = 24.2438 (18) Å b = 5.1618 (5) Å c = 24.4265 (17) Å $\beta = 111.532$ (6)° V = 2843.4 (4) Å³ Z = 8

F(000) = 1184 $D_x = 1.319 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 339 reflections $\theta = 3.9-53.5^{\circ}$ $\mu = 1.99 \text{ mm}^{-1}$ T = 296 KNeedle, colourless $0.83 \times 0.12 \times 0.06 \text{ mm}$ Data collection

Bruker SMART APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009) $T_{\min} = 0.289, T_{\max} = 0.890$	9528 measured reflections 2592 independent reflections 1421 reflections with $I > 2\sigma(I)$ $R_{int} = 0.104$ $\theta_{max} = 69.8^{\circ}, \theta_{min} = 3.9^{\circ}$ $h = -29 \rightarrow 29$ $k = -6 \rightarrow 5$ $l = -28 \rightarrow 28$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.166$	neighbouring sites
S = 0.93	H-atom parameters constrained
2592 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0875P)^2]$
182 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.22029 (4)	0.1447 (2)	0.07055 (4)	0.0718 (3)	
N1	0.17921 (10)	0.4985 (6)	-0.01167 (11)	0.0630 (7)	
H1A	0.2097	0.4590	-0.0199	0.076*	
N2	0.12318 (10)	0.4401 (5)	0.04598 (11)	0.0574 (7)	
01	0.04534 (10)	0.7057 (5)	0.03541 (11)	0.0747 (7)	
C1	0.17206 (13)	0.3706 (7)	0.03308 (14)	0.0594 (8)	
C2	0.08423 (13)	0.6424 (7)	0.01808 (14)	0.0600 (8)	
C3	0.09395 (12)	0.7664 (7)	-0.03127 (13)	0.0585 (8)	
C4	0.05611 (13)	0.9575 (7)	-0.06444 (14)	0.0630 (9)	
H4A	0.0243	1.0100	-0.0544	0.076*	
C5	0.06438 (15)	1.0717 (7)	-0.11196 (15)	0.0691 (9)	
C6	0.11382 (16)	0.9891 (8)	-0.12434 (16)	0.0763 (10)	
H6A	0.1206	1.0638	-0.1559	0.092*	
C7	0.15210 (15)	0.8048 (7)	-0.09221 (15)	0.0715 (10)	
H7A	0.1848	0.7578	-0.1013	0.086*	
C8	0.14201 (13)	0.6879 (7)	-0.04573 (14)	0.0578 (8)	
C9	0.10920 (14)	0.2997 (7)	0.09172 (15)	0.0657 (9)	

НОА	0 1263	0 1276	0.0958	0 079*
HOR	0.0665	0.2799	0.0788	0.079*
C10	0.13111 (14)	0.4281 (7)	0.15093 (14)	0.0641 (9)
C11	0.1103 (2)	0.3376 (10)	0.1930 (2)	0.0988 (15)
H11A	0.0831	0.2022	0.1840	0.119*
C12	0.1298 (3)	0.4483 (15)	0.2483 (2)	0.131 (2)
H12A	0.1144	0.3902	0.2758	0.157*
C13	0.1710 (3)	0.6401 (16)	0.2634 (2)	0.133 (2)
H13A	0.1854	0.7057	0.3015	0.160*
C14	0.1912 (2)	0.7364 (11)	0.2216 (2)	0.1082 (15)
H14A	0.2179	0.8737	0.2306	0.130*
C15	0.17129 (17)	0.6268 (8)	0.16567 (16)	0.0783 (11)
H15A	0.1856	0.6898	0.1377	0.094*
C16	0.02217 (18)	1.2711 (9)	-0.14931 (18)	0.0893 (12)
H16B	-0.0064	1.3143	-0.1321	0.134*
H16A	0.0021	1.2027	-0.1881	0.134*
H16C	0.0438	1.4238	-0.1516	0.134*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0640 (5)	0.0875 (7)	0.0707 (6)	0.0172 (4)	0.0327 (5)	0.0084 (5)
N1	0.0558 (14)	0.083 (2)	0.0576 (17)	0.0153 (13)	0.0295 (14)	0.0029 (15)
N2	0.0510 (13)	0.0688 (18)	0.0577 (16)	0.0036 (11)	0.0264 (13)	-0.0049 (13)
01	0.0601 (12)	0.0924 (19)	0.0855 (17)	0.0135 (11)	0.0430 (13)	-0.0007 (13)
C1	0.0500 (16)	0.076 (2)	0.0554 (19)	0.0024 (14)	0.0231 (16)	-0.0121 (17)
C2	0.0498 (16)	0.073 (2)	0.059 (2)	0.0022 (14)	0.0228 (16)	-0.0124 (17)
C3	0.0472 (16)	0.076 (2)	0.051 (2)	-0.0010 (14)	0.0169 (16)	-0.0104 (17)
C4	0.0543 (17)	0.070(2)	0.066 (2)	0.0069 (15)	0.0225 (17)	-0.0068 (18)
C5	0.065 (2)	0.074 (2)	0.066 (2)	0.0057 (16)	0.0211 (18)	-0.0006 (19)
C6	0.077 (2)	0.086 (3)	0.072 (2)	0.0089 (18)	0.035 (2)	0.008 (2)
C7	0.068 (2)	0.090 (3)	0.068 (2)	0.0134 (17)	0.0375 (19)	0.009 (2)
C8	0.0472 (16)	0.073 (2)	0.0540 (19)	0.0062 (13)	0.0194 (15)	-0.0060 (16)
С9	0.0629 (19)	0.065 (2)	0.080(2)	-0.0013 (14)	0.0393 (19)	-0.0001 (18)
C10	0.0643 (18)	0.074 (2)	0.063 (2)	0.0196 (16)	0.0343 (18)	0.0090 (18)
C11	0.115 (3)	0.114 (4)	0.090 (3)	0.020 (3)	0.065 (3)	0.028 (3)
C12	0.150 (6)	0.185 (7)	0.080 (4)	0.064 (5)	0.069 (4)	0.043 (4)
C13	0.131 (5)	0.196 (7)	0.068 (3)	0.061 (4)	0.031 (4)	-0.018 (4)
C14	0.108 (4)	0.117 (4)	0.092 (3)	0.010 (3)	0.027 (3)	-0.030 (3)
C15	0.082 (2)	0.089 (3)	0.066 (3)	0.002 (2)	0.029 (2)	-0.011 (2)
C16	0.082 (3)	0.091 (3)	0.092 (3)	0.014 (2)	0.028 (2)	0.012 (2)

Geometric parameters (Å, °)

S1—C1	1.667 (3)	C7—H7A	0.9300	
N1-C1	1.342 (4)	C9—C10	1.500 (5)	
N1—C8	1.382 (4)	С9—Н9А	0.9700	
N1—H1A	0.8600	C9—H9B	0.9700	
N2—C1	1.381 (3)	C10—C15	1.369 (5)	
N2—C2	1.405 (4)	C10—C11	1.381 (5)	

N2—C9	1.472 (4)	C11—C12	1.382 (7)
O1—C2	1.212 (3)	C11—H11A	0.9300
C2—C3	1.458 (4)	C12—C13	1.357 (9)
C3—C4	1.388 (5)	C12—H12A	0.9300
C3—C8	1.396 (4)	C13—C14	1.377 (8)
C4—C5	1.381 (5)	C13—H13A	0.9300
C4—H4A	0.9300	C14—C15	1.390 (6)
C5—C6	1.406 (5)	C14—H14A	0.9300
C5—C16	1.501 (5)	C15—H15A	0.9300
C6—C7	1.359 (5)	C16—H16B	0.9600
С6—Н6А	0.9300	C16—H16A	0.9600
C7—C8	1.385 (4)	C16—H16C	0.9600
C1—N1—C8	126.0 (2)	N2—C9—C10	114.6 (3)
C1—N1—H1A	117.0	N2—C9—H9A	108.6
C8—N1—H1A	117.0	С10—С9—Н9А	108.6
C1—N2—C2	124.2 (3)	N2—C9—H9B	108.6
C1—N2—C9	120.1 (3)	С10—С9—Н9В	108.6
C2—N2—C9	115.7 (2)	Н9А—С9—Н9В	107.6
N1—C1—N2	115.9 (3)	C15—C10—C11	118.5 (4)
N1—C1—S1	121.1 (2)	C15—C10—C9	123.4 (3)
N2-C1-S1	123.0 (2)	C11—C10—C9	118.1 (4)
01—C2—N2	120.1 (3)	C10-C11-C12	120.0 (5)
01 - C2 - C3	123.6 (3)	C10—C11—H11A	120.0
$N_2 - C_2 - C_3$	116.3 (2)	C12—C11—H11A	120.0
C4-C3-C8	119.5(2)	C13 - C12 - C11	121.3 (5)
C4-C3-C2	121 5 (3)	C13 - C12 - H12A	119.3
$C_{8} = C_{3} = C_{2}^{2}$	121.5(3) 1190(3)	C11 - C12 - H12A	119.3
$C_{5} - C_{4} - C_{3}$	117.0(3) 1217(3)	C12 - C13 - C14	119.3 (5)
$C_5 - C_4 - H_4 A$	119.1	C12 - C13 - H13A	120.4
$C_3 - C_4 - H_4 \Delta$	119.1	C12 C13 H13A	120.4
C4-C5-C6	119.1 116.7(3)	C13 - C13 - C15	119.5 (6)
C4-C5-C16	110.7(3) 121.8(3)	C13 - C14 - C13	120.3
$C_{4} = C_{5} = C_{10}$	121.0(3) 121.5(3)	C15 - C14 - H14A	120.3
$C_{0} = C_{0} = C_{10}$	121.3(3) 122.0(2)	C13 - C14 - II14A	120.3 121.2(4)
C_{7} C_{6} H_{6A}	122.9 (3)	C10 - C15 - C14	121.3 (4)
$C_{-}C_{-}H_{0}A$	118.5	C10 - C15 - H15A	119.3
C_{3}	110.2 (2)	CI4—CI3—HI3A	119.5
$C_0 - C_7 - C_8$	119.5 (5)	С5—С16—Н16В	109.5
$C_0 - C_1 - H/A$	120.5	C_{3} C_{10} H_{10A}	109.5
C_{8} C_{1} H_{A}	120.5	H10B - C10 - H10A	109.5
NI	122.0 (3)	C5—C16—H16C	109.5
NI = C8 = C3	118.3 (3)	H16B - C16 - H16C	109.5
C/-C8-C3	119.7 (3)	H16A—C16—H16C	109.5
C8—N1—C1—N2	-0.9 (5)	C1—N1—C8—C7	-178.2 (3)
C8—N1—C1—S1	179.7 (3)	C1—N1—C8—C3	3.6 (5)
C2—N2—C1—N1	-4.2 (5)	C6—C7—C8—N1	179.7 (4)
C9—N2—C1—N1	176.0 (3)	C6—C7—C8—C3	-2.1 (6)
C2—N2—C1—S1	175.1 (2)	C4—C3—C8—N1	179.5 (3)
	× /		(-)

C9—N2—C1—S1	-4.6 (4)	C2—C3—C8—N1	-1.3(5)
C1—N2—C2—O1	-173.6 (3)	C4—C3—C8—C7	1.3 (5)
C9—N2—C2—O1	6.1 (5)	C2—C3—C8—C7	-179.6 (3)
C1—N2—C2—C3	6.2 (5)	C1—N2—C9—C10	97.0 (3)
C9—N2—C2—C3	-174.1 (3)	C2-N2-C9-C10	-82.7 (3)
O1—C2—C3—C4	-4.2 (5)	N2-C9-C10-C15	-13.4 (5)
N2-C2-C3-C4	176.0 (3)	N2-C9-C10-C11	167.7 (3)
O1—C2—C3—C8	176.6 (3)	C15—C10—C11—C12	0.3 (6)
N2-C2-C3-C8	-3.1 (5)	C9—C10—C11—C12	179.3 (4)
C8—C3—C4—C5	0.5 (5)	C10-C11-C12-C13	-2.3 (8)
C2—C3—C4—C5	-178.6 (3)	C11—C12—C13—C14	3.8 (10)
C3—C4—C5—C6	-1.4 (5)	C12—C13—C14—C15	-3.2 (8)
C3—C4—C5—C16	177.6 (3)	C11—C10—C15—C14	0.2 (6)
C4—C5—C6—C7	0.5 (6)	C9—C10—C15—C14	-178.7 (4)
C16—C5—C6—C7	-178.5 (4)	C13—C14—C15—C10	1.3 (7)
C5—C6—C7—C8	1.3 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
N1—H1A····S1 ⁱ	0.86	2.50	3.335 (3)	165
C4—H4A···O1 ⁱⁱ	0.93	2.41	3.295 (4)	159

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, -*z*; (ii) -*x*, -*y*+2, -*z*.